PipingOffice - Piping Calculators

Get this set of calculators for piping design.




Updated
January 1, 2014


Advertising sponsor:
PipingDesign.com
Eng-Tips ForumJoin Eng-Tips Forums

Piping Calculators

Calculations are per ASME B31.1 Power Piping, B31.3 Process Piping, B31.4 Pipeline Transportation Systems for Liquids and Slurries, B31.5 Refrigeration Piping, B31.8 Gas Transmission and Distribution Piping Systems, and Miscellaneous.

Descriptions / Examples

Examples below show only small portions of the main files. The PipingOffice calculators are compatible with Microsoft Excel 2007 and later. Files were created using Microsoft Windows 98, Windows XP, and Windows 7.

You will not need much prior Excel experience. These tools are user-friendly and may improve your understanding of the ASME Piping Codes.


A Menu file allows the user to choose and open each calculator by title and subject.
Piping Calculators Main Menu:


Pipe Required Thicknesses
This example is per ASME B31.3 Process Piping Code. All materials are retrievable from a separate data file. Dimensional data are retrieved by clicking dropdowns. All common ASME standard NPS and DN pipe sizes and thicknesses are included.

Flange ratings are chosen per B16.5 for design pressure input. The flange ratings can be overridden.

Similar files for calculating required thicknesses are included per ASME B31.1, ASME B31.4, ASME B31.5, and ASME B31.8. (examples not shown).



Pipe Allowable Pressures:

This example is per ASME B31.1 Power Piping Code. All materials are retrievable from a separate data file. Dimensional data are retrieved from a shared data file. All common ASME standard NPS and DN sizes and thicknesses are included.

Threaded pipe is included. So is tubing. Pipe dimensions are chosen for either US Customary or Metric units.

Flange ratings per ASME B16.5 are chosen and displayed for reference.

The user must review and possibly edit input for joint efficiency, thickness allowance, and mill tolerance. Piping Code notes and longitudinal weld joint efficiencies can be viewed.

Printing of the whole area of allowable pressures will fill about 6 pages.

If you make the mill tolerance zero (0), and the thickness allowances zero (0), the calculations will be for pipe of actual measured thickness or pipe that is ordered as minimum wall.

You can determine the allowable pressure of corroded pipe.

Similar files are included per ASME B31.3, ASME B31.4, ASME B31.5, and ASME B31.8. (examples not shown).


Pipe Branch Reinforcement per B31.1:


Designs are for unreinforced, ring, pad, saddle, or full encirclement.

These are huge time savers.

Data included for all materials and numerous dimensions. ASME B16.5 flange ratings are selected for reference. Pipe dimensions and pressures are chosen for either Imperial (US Customary) or Metric units.

Two very different layouts are used. The most useful is probably the one with calculations for one branch at a time. It allows calculations for a second branch placed next to the first and overlapping reinforcment zones can be included in the calculation of required reinforcement.

The other method allows calculations for 190 possible combinations of header to branch size. Dimensional data is retrieved by macros from a shared data file.

There are many choices of branch types that a designer can use per the Piping Code. (See PDF file of Full Encirclement graphics per ASME B31.4.)

The calculators determine if reinforcement is required or not, and if header or branch thickness is adequate. Also, if a calculation is valid for the diameter-to-thickness ratio or size ratio.

Results in the example shown are displayed in a box similar to a branch table in a piping line class specification (most large companies use branch tables in their specs).

Branch reinforcement designs to ASME B31.1, ASME B31.4, and ASME B31.5 are done in similar files (examples not shown).


Pipe extruded outlet branch reinforcement per ASME B31.4.
ASME B31.4 Extruded Outlet Branch Reinforcement Design (1st part)

Example extruded outlet branch reinforcement per ASME B31.4.
(2nd part)

This spreadsheet gives the ability to design two branches on the same header and reinforcing zones could overlap.

Inputs include selections by dropdowns. You can override the standard dimensions. Features are similar to those of the other calculators above, but with 2 branches side by side.

Similar extruded outlet branch reinforcement designs
Pipe extruded outlet branch reinforcement per ASME B31.3.
per B31.3
and B31.8 are also provided.


Pipe mitered elbow design calcs.
ASME B31.3 Mitered Elbow Design:

This spreadsheet calculates pipe mitered elbow design per ASME B31.3 Process Piping Code.

All materials are retrievable from a separate data file. Pipe dimensions and pressures are chosen for either Imperial or Metric units. Dimensions are chosen from a table using dropdowns.

Results include allowable pressures for both multiple miter and single miter elbows. Comments, ASME B31.3 notes, and joint efficiencies are referenced and weld joint values are placed by macros.

Mitered elbow designs to ASME B31.1 are done in a similar file (example not shown).


Bending pipe per ASME B31.3.
ASME B31.3 Pipe Bend Design:

This calculates pipe bend design per ASME B31.3 Process Piping Code.

All materials are retrievable from a separate data file. Dimensions and pressures are chosen for either Imperial or Metric units. Dimensions are chosen from a table.

Results include allowable pressures and required thicknesses. Comments, ASME B31.3 notes, and joint efficiencies are referenced, and weld joint values are placed by macros.

Pipe bend designs to ASME B31.1 are done in a similar file (example not shown).


Steam safety valve reactions calculations per ASME B31.1.
ASME B31.1 Steam Safety Valve Reactions:

Calculations are per ASME B31.1, Appendix II.

Forces and moments are the results a user will enter into a pipe stress program, such as Caesar II.

The file contains dropdown boxes for selecting material, condition of steam, and sizes of inlet, discharge, and vent pipes. The user can choose either degrees-F or degrees-C. Interpolations are made for intermediate table values for Young's modulus and allowable stress. Fanno line graphs and a dynamic load factor graph are provided.


Support Span, Shoe Bearing, and Weight Data:

It calculates pipe and tubing support spacing (or span), support shoe bearing and weights. Results include weights of pipe, tube, fluid, insulation, plastic liner, refractory, ice on exterior, cross-sectional areas, and more.

Simple support spacing, continuous support span, cantilever, and shoe bearing calculation results are shown with graphics that help explain their meanings. Concentrated loads can be entered at mid-span to consider valve or other added weight.

Insulation density is converted to lbs/in^3 for convenience of Caesar II input. This file includes tables that allow selections via dropdown boxes for materials, material densities, dimensions, insulation, and plastic or refractory liners.

The user should change the data tables to indicate the brand or brands being used.


High pressure pipe required thickness per ASME B31.3.
ASME B31.3 Chapter IX, Allowable Hi-Pressure Pipe (or Tubes):

This is typically for pressures above the ratings for ASME B16.5 Class 2500 flanges.

Thickness reduction allowances can be entered for inside or outside, or both. Threaded pipe and tubing are included. Dimensions and pressures are chosen from tables with either Imperial or Metric units.

Data tables are included for materials in Section K of the Code. Printing of the whole area of allowable pressures will fill about 2 pages.

If you make the mill tolerance zero and thickness allowances zero, the calculations will be for pipe or tube of actual measured thickness or that is ordered as minimum wall. You can also calculate the allowable pressure of corroded pipe or tube.


Theoretical External Collapse Pressure  (Method 1) (PDF)   (Method 2) (PDF)   This file calculates external pressures which produce plastic buckling and elastic collapse. The file was completely rewritten in August, 2008.

This is not per ASME Code except for external pressure not exceeding 15 psig.

When elastic collapse occurs due to external pressure, the pipe reshapes into lobes. The minimum number of lobes is 2. In a collapse with 2 lobes, the pipe cross-section will resemble an hourglass or figure-8.


SIF -Stress intensification and flexibility factors per ASME B31.3.
Stress Intensification and Flexibility Factors   (B31.3 ell example)

SIF -Stress intensification and flexibility factors per ASME B31.1.
(B31.1 fab. tee example)

Calculations are for factors for pipe fittings. The results are used in pipe stress analysis. SIFs per ASME B31.5 are done in a similar file. Some formulas are slightly different in each Piping Code.

Line Blanks (Line Blinds), Spacers, Spectacle Blinds (Figure-8's), and Restricting Orifices Design per ASME B31.3:  Allowable Pressures and Spec Sheets This file calculates design thicknesses, dimensions, and weights of line blanks, spacers, spectacle blanks (figure-8's), and restriction orifices per ASME B31.3 -2010, para. 304.5, Eq. (15). Data from ASME B16.48, ASME B16.5 -2003, and ASME B16.47-1999 are also applied. Raised face and ring joint designs are included.


Linear interpolations demo.
Linear Interpolations in a Table Without Using Macros:

This shows an example of creating a dropdown box control for material selection and a slider control box for temperature change. Formulas contain the Vlookup function for retrieval of stress values of selected material. Linear interpolation is then done to determine a stress value at any temperature over a range of data. Macros are not used.

Email: Ben A. Nottingham     Phone: (423)323-5307 (USA)
Your privacy is important to me.
Solution Graphics